Geoff Webb

Scalable learning of graphical models

From understanding the structure of data, to classification and topic modeling, graphical models are core tools in machine learning and data mining. They combine probability and graph theories to form a compact representation of probability distributions. In the last decade, as data stores became larger and higher-dimensional, traditional algorithms for learning graphical models from data, with their lack of scalability, became less and less usable, thus directly decreasing the potential benefits of this core technology. To scale graphical modeling techniques to the size and dimensionality of most modern data stores, data science researchers and practitioners now have to meld the most recent advances in numerous specialized fields including graph theory, statistics, pattern mining and graphical modeling.

This tutorial will cover the core building blocks that are necessary to build and use scalable graphical modeling technologies on large and high-dimensional data.

Biography: Geoff Webb is Director of the Monash University Center for Data Science. He was editor in chief of Data Mining and Knowledge Discovery from 2005 to 2014. He has been Program Committee Chair of both ACM SIGKDD and IEEE ICDM, as well as General Chair of ICDM. He is a Technical Advisor to BigML Inc, who are incorporating his best of class association discovery software, Magnum Opus, into their cloud based Machine Learning service. He developed many of the key mechanisms of support-confidence association discovery in the 1980s. His OPUS search algorithm remains the state-of-the-art in rule search. He pioneered multiple research areas as diverse as black-box user modelling, interactive data analytics and statistically-sound pattern discovery. He has developed many useful machine learning algorithms that are widely deployed. He received the 2013 IEEE Outstanding Service Award, a 2014 Australian Research Council Discovery Outstanding Researcher Award and is an IEEE Fellow.